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In this paper we propose a preconditioned lattice Boltzmann(LB) method for steady incompressible flows.
For steady flows, the macroscopic equations derived from this LB model are equivalent to those from the
standard LB model, but with an improved eigenvalue system. The proposed model can be viewed as an explicit
solver for preconditioned compressible Navier-Stokes equations. Linear stability analysis is performed and the
results show that the stability of the model is the same as that of the standard LB model for low Mach numbers.
The proposed model retains the structure of the standard LB model and, hence, possesses all the advantages.
Numerical tests show that the convergence rate can be enhanced as much as an order of magnitude compared
to the standard lattice Boltzmann method. The accuracy of the solutions is improved as well.
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I. INTRODUCTION

The lattice-Boltzmann method(LBM ) developed about a
decade ago is a kinetic approach for computational fluid dy-
namics(CFD) [1–5]. In the LBM, the dynamic behavior of a
fluid is described by a lattice-Boltzmann equation(LBE) for
the single-particle distribution function(DF), and the flow
variables, such as density, velocity, and temperature, are de-
termined from the DF directly. The advantages of the LBM,
such as its parallelism, simple structure, simplicity in coding,
and the straightforward incorporation of microscopic interac-
tions, have been well demonstrated in the literature. As ap-
plied to steady flows, however, the standard LBE usually
converges rather slowly[6], and the time-exhausting conver-
gence progress prevents it from being as competitive as con-
ventional CFD methods in practical applications.

The slow convergence rate is an inherent disadvantage of
the standard LBM. It is well understood that the LBM is an
explicit time-marching method for compressible fluid flows
with low Mach numbers, in other words, an explicit artificial
compressible scheme for incompressible Navier-Stokes
equations. In addition to the error due to numerical discreti-
zation, the finite Mach number effect also introduces a grid-
independent “compressibility” error. To reduce this error, the
Mach number must be sufficiently small in the LBM. As the
Mach number becomes smaller, however, it would become
increasingly difficult to solve the compressible Navier-
Stokes equations using a general time-marching numerical
scheme. This difficulty is rooted in the large disparity be-
tween the acoustic wave speed and the fluid speed that con-
verts other waves in low Mach number flows[7–10]. Usu-
ally, for any explicit scheme, the Courant-Friedrich-Levy
(CFL) condition should be fulfilled for the sake of numerical
stability. Therefore, the time step should be chosen such that
it is inversely proportional to the sound speed of the acoustic
wave, during which the waves driven by the fluid change
slightly. As a result, a large number of time steps are needed
to reach the steady state of the flow. As an explicit scheme,

the LBM also suffers from this problem. Researchers have
noted this problem and made efforts to accelerate the con-
vergence rate of the LBM from different viewpoints[11–20].

In general, the existing accelerated LBE models fall into
two categories: a time-dependent approach and a time-
independent approach. In the former, the LBE still evolves as
a time-marching process, but the evolution equation is al-
tered either by including a false forcing term into the stan-
dard LBE, which accelerates the convergence while it van-
ishes at the steady state[11,12], or by employing certain
implicit schemes to discretize the time-dependent discrete-
velocity Boltzmann equation(DVBE) so that a large time
step can be used[13–15]. On the other hand, in the time-
independent approach, a linear or nonlinear algebra system
derived from the time-independent form of the standard LBE
or DVBE is solved directly for steady Stokes[16] or Navier-
Stokes flows[17–19]. Alternatively, Tölkeet al.attempted to
solve the time-independent DVBE using the multigrid
method directly[20].

The accelerated LBMs mentioned above all yield im-
proved convergence in comparison to the standard LBE.
These methods, however, are more complicated than the
standard LBE, and, thus, the advantage of simplicity of the
LBM is sacrificed. In this paper, we aim to propose an LBE
model for steady flows that retains the advantages of the
standard LBM, but with an accelerated convergence rate.
The key point of the model is to modify the equilibrium
distribution function(EDF) with the addition of a parameter.
With this EDF, the macroscopic equations derived from the
model can be viewed as certain preconditioned Navier-
Stokes equations[7–10], which are equivalent to the Navier-
Stokes equations for steady flows, but with a better solvable
condition due to the removal of the original eigenvalue stiff-
ness. The rest of the paper is organized as follows. First, we
outline the essential ingredients of the LBM in Sec. II, fol-
lowed by presenting the LBE model for the steady Navier-
Stokes equations in low Mach number limit in Sec. III. Nu-
merical results predicted by this model are compared with
the standard time-dependent LBE in Sec. IV. Finally a dis-
cussion is made in Sec. V.*Corresponding author. Email address: metzhao@ust.hk
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II. LATTICE-BOLTZMANN EQUATION

The lattice-Boltzmann equation for isothermal flows is a
discrete Boltzmann equation with a finite discrete velocity
set,

f isx + cidt,t + dtd − f isx,td = Visfd, s1d

where f isx,td is the single-particle distribution function for
particles moving with velocityci at positionx and timet, dt
is time step, andVi is the collision operator representing the
rate of change due to collisions in the DFf i. The most widely
used collision operator in LBM is the Bhatnagar-Gross-
Krook (BGK) or the single-relaxation-time model,

Visfd = −
1

ts
ff i − f i

seqdg, s2d

wherets is the nondimensional relaxation time, andf i
seqd is

the local equilibrium distribution function. The macroscopic
densityr and velocityu of the fluid are determined by the
particle velocity moments of the DFs,

r = o f i, ru = o ci f i . s3d

The discrete velocities and EDF must be chosen properly
such that the mass and momentum are conserved and sym-
metry requirements are satisfied. As such, the resulting mac-
roscopic equations derived from Eq.(1) describe the correct
hydrodynamics of the fluid. For illustration, we now use the
D2Q9 model[21] as an example, where the EDF is defined
by

f i
seqd = virF1 +

ci ·u

cs
2 +

uu:scici − cs
2I d

2cs
4 G , s4d

where the discrete velocities are given byc0=0, and ci
=liscosui ,sinuid with li =c, ui =si −1dp /2 for i =1−4, and
li =Î2c, ui =si −5dp /2+p /4 for i =5−8. The weights are
given by v0=4/9, vi =1/9 for i =1−4, vi =1/36 for i =5
−8, andcs=c/Î3 is the sound speed of the model, andc
=dx/dt, wheredx is the lattice spacing. The EDF(4) can also
be derived from the Boltzmann-Maxwellian distribution via
a Taylor expansion inu /cs<M up to second order[22,23],
where M represents the Mach number. This indicates that
EDF (4) holds only for smallM. Therefore,M must be small
in the LBM.

The macroscopic equations can be derived from the LBE
(1) through the Chapman-Enskog procedure in the low Mach
number limit [24]. By neglecting the termsOsdxM

3d and
Osdx

2d, the derived macroscopic equations can be written as

]r

]t
+ = · srud = 0, s5ad

]srud
]t

+ = · sruud = − ¹ p + ¹ · srnSd, s5bd

whereS= ¹u+s¹udT, p=cs
2r is the pressure, and the shear

viscosityn is given by

n = cs
2sts − 1

2ddt. s6d

Since Eqs.(5) take the form of compressible Navier-
Stokes equations, the LBE(1) is virtually a solver for iso-
thermal compressible fluid flows with a low Mach number.
Compared with the incompressible Navier-Stokes equations,
Eqs. (5) have additional terms of orderOsM2d in the conti-
nuity equation andOsM3d in the momentum equation. As we
apply the LBM to solve the incompressible Navier-Stokes
equations, a “compressible” error, in addition to the usual
spacial and temporal discretization errors, arises[25]. There-
fore, in practical applications, the Mach number in the LBM
should be kept small in order to reduce this error.

Yet, a small Mach number may cause numerical difficul-
ties for the LBM as follows. First, for a flow at a fixed
Reynolds number Re=LU0/n, whereL andU0 are the char-
acteristic length and velocity of the flow, from Eq.(6) we
obtain

ts − 0.5 =
U0

cs

L

dx

Î3

Re
=

Î3NM

Re
, s7d

whereN is the number of grid points in one direction. There-
fore, for a given lattice,ts approaches 0.5 asM approaches
to zero. It is understood that under this circumstance the
computation of the LBE usually becomes unstable[26].

Second, a small Mach number means that LBE usually
takes a long time to reach a steady state for a steady flow.
This is due to the eigenvalue stiffness of the compressible
Navier-Stokes equations(5) [7]. To see this more clearly, we
rewrite the two-dimensional Eq.(5) in a vector form,

]Q

]t
+

]E

]x
+

]F

]y
= RhQvj, s8d

whereR represents the vector associated with the appropriate
viscous terms on the right hand side of Eq.(5), and Q
=sr ,ru,rvdT, E=sru,ru2+cs

2r ,ruvdT, F =srv ,ruv ,rv2

+cs
2rdT, Qv=s0,u,vdT, whereu and v are thex and y com-

ponents of the velocityu, respectively. Eq.(8) can be further
written as

]Q

]t
+ A

]Q

]x
+ B

]Q

]y
= RhQvj, s9d

whereA=]E /]Q andB=]F /]Q.
It can be shown that the eigenvalues of the matrixesA and

B are

lsAd = su,u ± csd, lsBd = sv,v ± csd s10d

respectively. Therefore, the condition number ofA, kksAd
;maxli /l j over all the eigenvaluesl of A, is of order 1/M,
which will be very large as the Mach number of the flow is
small. Similarly, the condition number of matrixB is also
large in this case. This fact means that the waves in the fluid
transfer with quite different speeds, which will make a time-
marching scheme, including the LBE(1), converge very
slowly [7]. It is noted that the viscous terms also have com-
plex influences on the wave speeds, depending on the Rey-
nolds number and the ratio of the Reynolds number to the
Mach number[9]. The convergence difficulty can be further
exacerbated by the magnitude of the diffusion terms[7].
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III. PRECONDITIONED LBE

The arguments presented in Sec. II show that the LBE
method can be viewed as a time-marching solver for com-
pressible Navier-Stokes equations in the low Mach number
limit. From the standpoint of reducing the “compressible”
error, the LBM is more applicable to small Mach number
flows. A small Mach number, however, may induce numeri-
cal difficulties. In particular, for steady flows, a small Mach
number causes the convergence to become very slow. To
overcome this problem, we propose a preconditioned LBM
in this section.

A. Formulation

The preconditioned LBE(PLBE) takes the same form as
the standard LBE and is rewritten here as

f isx + cidt,t + dtd − f isx,td = −
1

tp
ff i − f i

seqdg, s11d

but the EDF is now defined by

f i
seqd = virF1 +

ci ·u

cs
2 +

uu:scici − cs
2I d

2gcs
4 G , s12d

with 0,gø1 an adjustable parameter. The definition of the
fluid density and velocity are the same as Eq.(3).

Through the Chapman-Enskog procedure we can derive
the macroscopic equations from the LBE(11) as

]r

]t
+ ¹ · srud = 0, s13ad

]srud
]t

+
1

g
= · sruud = −

1

g
= p * +

1

g
¹ · srnSd,

s13bd

where p* = gcs
2r, and n=gcs

2stp−0.5ddt. Clearly, for steady
flows, Eq.(13) reduces to Eq.(5), but with a different equa-
tion of state. It is clear that the effective sound speedcs

*

=Î]p* / ]r=Îgcs is decreased asg,1.
It should be noted that if there exists a body forceF

acting on the fluid, the PLBE(11) should be modified by
adding a forcing termdtFi on its the right-hand side. Several
choices for the forcing term are available in literature for the
standard LBE(see, e.g.,[27] and references therein), and
similar formula for Fi can also be applied to the present
PLBE, but with a scaled body force byg. For instance, if we
ignore the higher order terms inFi, we can express it asFi
=vici ·F /gcs

2. With such a forcing term, the resultant mo-
mentum equation takes the same form as Eq.(13b) except
with a scaled body forceF /g.

The macroscopic equations(13) can be interpreted as pre-
conditioned Navier-Stokes equations. In fact, Eq.(13) can be
rewritten as

]Q

]t
+ PA

]Q

]x
+ PB

]Q

]y
= PRhQvj, s14d

whereQ, A, B, andR are the same as defined earlier, except
that cs is replaced by the effective sound speedcs

* ; P

=diags1,1/g ,1 /gd is a precondition matrix. Now the eigen-
values of the preconditioned convection matrixPA become

lsPAd = su,u ± c̄sd/g, s15d

wherec̄s=uÎ1−g+sgcs/ud2 is an effective sound speed. It is
clear that asg=1.0, c̄s reduces to the original sound speedcs.
Conversely, asg approaches zero,c̄s approaches the fluid
speedu. Therefore, by adjusting this parameter, we can de-
crease the disparity between the speeds of the acoustic wave
and the waves propagating with the fluid velocity, and thus
accelerate the convergence rate of the LBE. It is also noted
that for low Mach number flows, namely, asu→0, we have
c̄s=cs

* =Îgcs.
According to the effective sound speedcs

* , we can define
an effective Mach numberM* as M * = U0/cs

* . It is clear that
M * = ÎgM, and, therefore,M * ùM for 0,gø1. In practi-
cal applications, the parameterg can be chosen such thatM*
is low enough for a given flow condition. This can be done
by first specifying the value ofM* according to the flow
condition and then settingg=sM /M * d2.

B. Linear stability analysis

The parameterg has an influence on the stability of the
PLBE. In fact, from the relationship between the viscosity
and the relaxation time, we obtain

tp − 0.5 =
Î3NM

gRe
, s16d

from which we see that the deviation oftp from 0.5 is in-
creased by decreasing the value ofg for given M and Re on
a fixed lattice. Therefore, it is expected that the PLBE(11)
has a better numerical stability range than the standard LBE
(1) for small Mach number or high Reynolds number flows.
It is also noted thatg also influencesf i

seqd. The decrease ing
means an increase in the last term in the brackets of the EDF
given by Eq.(12), which may make EDFs become negative
and, thus, cause numerical instability. These arguments indi-
cate that the parameterg has complicated influences on the
numerical stability of the PLBE.

The stability of the PLBE can be analyzed systemically
using the von Neumann linear analysis method[26]. To this
end, we first expand the DFf isx ,td as

f isx,td = f i
s0d + f i8sx,td, s17d

where the global EDFf i
s0d is a constant that depends only on

the constant uniform densityr0 and velocityu0, f i8sx ,td is the
fluctuation of f i around the global EDF. Substituting this ex-
pansion into the LBE(11), we obtain a linearized system,

f i8sx + cidt,t + dtd − f i8sx,td = −
1

tp
ff i8sx,td − Gij f j8sx,tdg,

s18d

whereGij =]f i
seqdsr0,u0d /]f j is the Jacobian matrix evaluated

at the uniform mean density and velocity. It is noted thatGij
does not vary in space or time. Equation(18) can be rewrit-
ten in a compact form as
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f i8sx + cidt,t + dtd = Mij f j8sx,td, s19d

where the matrixMij is given by

Mij = S1 −
1

tp
Ddi j +

1

tp
Gij . s20d

The Fourier transform of Eq.(19) gives that

Fisk,t + dtd = expf− ik ·eigMijFjsk,td, s21d

wherei =Î−1, Fjsk ,td is the Fourier transform off i8sx ,td, k is
the wave number in units of 1/dx, andei =ci /c is the dimen-
sionless discrete velocity. The spatial dependence of the sta-
bility of the PLBE (11) is determined by the eigenvalues of
the matrixGi jskd=expf−ik ·eigMij . The explicit expression of
the Jacobian matrixGij for the D2Q9 model can be written
as

Gij = viF1 + 3sei ·ejd −
3

2g
s2sej ·u08d − u08

2d

+
9

2g
s2sei ·u08dsei ·ejd − sei ·u08d

2dG , s22d

whereu08=u0/c. It can be shown that the eigenvalues ofG
are 1 and 0 with multiplicities 3 and 6, respectively, which
are independent ofg andu08. Accordingly, the eigenvalues of
the matrixM are 1 and 1−1/tp.

It is clear thatG=M ask=0; therefore, the PLBE(11) is
asymptotically stable ifu1−1/tpu,1, i.e.,tpù0.5, which is
the same as the standard LBE[26]. As kÞ0, the eigenvalues
of G has a complex dependence on the parametersg, u08, k,
andtp. Hence, it is rather difficult to give a complete map-
ping of all the stability boundaries. Here we restrict our-
selves to cases where the wave numberk is parallel to the
uniform velocity u0 because under such circumstances the
most unstable condition occurs for the standard LBE[26].
Furthermore, we assume that bothk andu0 are aligned with
e1. It is also noted that for a given lattice and fixedM and
Re, the dimensionless relaxation timetp should be adjusted
according to Eq.(16) for different values ofg. In fact,tp can
be determined by

tp − 0.5 =sts − 0.5d/g, s23d

where ts is the relaxation time for the standard LBE asg
=1.

We first investigate the dependence of the modulus of
Gskd, the maximum magnitude of the eigenvalues ofGskd
[denoted asiGskdi], on the wave numberk. We note that for
small values ofu08, asg decreases from 1 to a certain critical
value larger than zero,iGskdi becomes smaller at all wave
numbers in comparison to the case forg=1.0. However, asg
is lower than the critical value,iGskdi increases dramatically
at some wave number and the numerical stability becomes
worse. As an example, we present in Fig. 1 the modula ofG
with u08=0.01 andts=0.501 for several different values ofg.

The global stability of the proposed PLBE model relies on
the maximum value ofiGskdi over the entire range ofk (re-
ferred to aslm). In Fig. 2, lm is plotted as a function ofts
and u08 for several values ofg. It is first observed that for

each value ofg, there exists a critical valueu0c8 . As u08
øu0c8 , lmø1.0, and the PLBE would be stable. On the con-
trary, asu08.u0c8 , lm increases dramatically withu08 and the
scheme would become unstable. This critical value clearly
depends on the parameterg: the smallerg is, the smalleru0c8
is, which means that the stable range of PLBE is reduced as
compared to the case forg=1 (i.e., the standard LBE). For-
tunately, for small Mach number flows in which LBE works,
the fluid velocity is usually much lower thanu0c, and under
such a circumstance the PLBE is expected to have a stability
similar to the standard LBE.

IV. NUMERICAL EXAMPLES

In this section, some numerical simulations are carried out
to demonstrate the performance of the proposed PLBE. In all
runs, we assume that the steady state is reached as the re-
sidual error estd;iustd−ust−100dtdi2/ iustdi2 is less than
10−6, whereustd is the computed velocity field at timet.

A. Couette flow

We first apply the PLBE to the planar Couette flow in a
channel where the upper plate moves with a constant veloc-

FIG. 1. The modulus ofG vs wave numberk for different g.
u08=0.01 andts=0.501.

FIG. 2. The maximum modulus ofG vs ts andu0/c for different
g.
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ity U0 relative to the bottom plate. An analytical solution is
known for this problem and, thus, enables us to compare the
accuracy of the PLBE with the standard LBE. In simulations,
a periodic boundary condition is applied to the entrance and
exit, and the nonequilibrium extrapolation method for veloc-
ity boundary condition[28] is applied to the top and bottom
plates. All the simulations are carried out on a 64364 lattice.
Initially, the velocity in the entire channel is set to zero, and
the density is set to unity. The Reynolds number based onU0
and the channel widthH is fixed at 100.0, and the precondi-
tion parameterg is set to beg=sM /M * d2 with different
values ofM andM*.

The convergence processes for variousM of the PLBE
with M * =0.1 are presented in Fig. 3 together with the re-
sults of the standard LBE. In simulations, the channel width
H is fixed and the relaxation timetp is adjusted to keep the
same Reynold number Re. It is seen that in all cases the
PLBE converges to the exact solution with a faster rate than
the standard LBE, and the acceleration depends ong. As
expected, the smallerM, the more slowly the standard LBE
converges. On the contrary, the smaller theM, the faster the
preconditioned LBE converges. This feature is further dem-
onstrated in Fig. 4 with some other values ofM*, which
indicates that the relation between the iteration number

needed to reach the steady state can be expressed approxi-
mately asN,gn with n<0.45, for the case under consider-
ation. Figure 4 also shows that the convergence rate of the
PLBE with M ,M* and g=sM /M * d2 is enhanced to that of
the standard LBE withM =M* and g=1.0, although in both
cases the effective Mach number is identical.

Another gain of the PLBE is the improvement in accu-
racy. The global relative error, defined byE=iu−uei2/ iuei2
with u as the numerical solution andue as the analytical
solution, is displayed in Fig. 5 againstg with different ref-
erence Mach numbers. As seen, the errors decrease exponen-
tially with g in all cases considered, which demonstrates the
accuracy improvement of the PLBE, although in all cases the
effective Mach number is identical.

The above findings are of practical significance: to obtain
the solution of a Steady flow problem economically and ac-
curately, should we use the standard LBE with a relatively
larger Mach number or use the PLBE with a smaller Mach
number and a larger reference Mach number? The above
findings indicate that the PLBE with a smaller Mach number
and a smallerg is a better choice.

FIG. 3. Convergence histories of PLBE and standard LBE for
the Couette flow with different Mach numbers. Re=100,M * =0.1:
(a) residual error,(b) velocity at the channel center.

FIG. 4. The iteration number vsg for the Couette flow at vari-
ous reference Mach numbers. Re=100.

FIG. 5. The global relative error vsg for the Couette flow at
various reference Mach numbers. Re=100.
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B. Driven cavity flow

The flow in a square cavity whose top wall moves with a
uniform velocity U0 is used as the second test problem for
the proposed PLBE. The computational mesh used is 256
3256, and, initially, the fluid is set to be stationary in the
whole domain. The nonequilibrium extrapolation method is
applied to the four walls to treat the velocity boundary con-

ditions. The reference Mach numberM* is set to be 0.058,
and the precondition parameterg is changed according to the
Mach numberM as before.

Computations were carried out for Re=400 and 1000,
where Re is the Reynolds number based onU0 and the cavity
heightH. In Fig. 6, the time-history of the residual errors for
each case is presented, and the result for the standard LBE is

FIG. 6. Convergence histories of PLBE and standard LBE for
the cavity flow with Re=400 and 1000.M * =0.058.

FIG. 7. The iteration number vsg for the Cavity flow with Re
=400 and 1000.

FIG. 8. Velocity [(a) and (b)] and pressure[(c) and (d)] distributions through the cavity center at Re=400.
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also presented for comparison. It is clearly seen that the
PLBE enhanced the convergence rate greatly for both cases
compared with the standard LBE. Usually, the convergence
acceleration depends ong for a given Re, as illustrated in
Fig. 7.

It should be emphasized that the acceleration of PLBE is
achieved without sacrificing the accuracy of the solution. In
Figs. 8 and 9, the velocity and pressure distributions along
the vertical and horizontal lines through the cavity center are
presented for Re=400 and 1000, together with the bench-
mark results if available[29,30]. It is seen that in all cases
the velocity distributions predicted by the PLBE agree well
with the benchmark solutions, and the difference between
these results with differentg is nearly indistinguishable.
However, some prominent differences are observed among
the pressure distributions for different values ofg. The dif-
ferences are small in the central region, but become larger
near the walls. Also, the differences increase as Re becomes
larger. The comparison with the benchmark data[30] shows
that the pressure distributions predicted by the PLBE with
g,1 agree better with the benchmark solutions than that by
the standard LBEsg=1d, which demonstrates the desirable
properties of PLBE.

It is noted that some oscillations occurs during the con-
vergence process. This is due to the reflection of the acoustic
waves on the walls. We find that this oscillation can be
damped out by enhancing the bulk viscosity, which does not

alter the solutions for incompressible flow or compressible
flow with low Mach number. The suppression of such oscil-
lations can further accelerate the convergence process. We
will address this problem elsewhere.

V. SUMMARY

The standard LBE method is usually ineffective for steady
flows due to the slow convergence rate. In this paper, a pre-
conditioned LBE with an accelerated convergence rate is
proposed. For steady flows, the macroscopic equations de-
rived from the model are equivalent to the Navier-Stokes
equations, but with an improved eigenvalue system. Numeri-
cal tests have been carried out to verify the convergence
behavior and numerical accuracy of the model. The results
indicate that the preconditioning can improve the conver-
gence rate greatly, while maintaining or even improving the
accuracy of the final results predicted by the standard LBE.
The convergence rate can be accelerated by orders of mag-
nitude, depending on the parameterg.

The main difference between the present LBE model and
other accelerated time-marching LBE methods[11–15] lies
in the definitions of the EDFs. In all of the previous models,
the EDF is the same as that used in the standard LBE, and
the acceleration is achieved by employing heuristic tech-
nique [11,12] or complicated implicit schemes[13–15]. The
eigenvalue stiffness of the derived macroscopic equations is

FIG. 9. Velocity [(a) and (b)] and pressure[(c) and (d)] distributions through the cavity center at Re=1000
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unchanged, and the stability and accuracy of these methods
need further investigation. The present LBE, however, uses
an EDF that differs slightly from the standard one, and all the
advantages of the standard LBE are maintained. The accel-
eration of the PLBE is achieved by decreasing the disparity
between the speeds of different waves in the flow, which has
a clear physical significance. Furthermore, we can incorpo-
rate other acceleration techniques, such as used in Refs.
[11–15], into the present PLBE to obtain more efficient
methods.

The convergence acceleration of the present PLBE is
lower than that of the multigrid LBE proposed in[20]. How-
ever, the latter is based on a steady DVBE with the EDF used
in the standard LBE. This LBE can be viewed as a multigrid
solver for the steady compressible Navier-Stokes equations
with low Mach numbers. The equations have an eigenvalue
system similar to that of the compressible Navier-Stokes
equations derived from the standard LBE, and the eigenvalue
stiffness problem still exists. As pointed out in Ref.[8], this
eigenvalue stiffness may slow down the convergence rate of
a multigrid procedure. A steady DVBE with the EDF defined
by Eq. (12), however, can lead to a steady preconditioned

Navier-Stokes system, in which the eigenvalue stiffness is
softer. Therefore, if we apply the multigrid technique to such
DVBE, the resultant multigrid LBE is expected to have bet-
ter acceleration than that proposed in[20].

In summary, the proposed preconditioned LBE has the
following distinctive advantages compared with previous ac-
celeration LBE methods: First, the PLBE converges faster
than the standard LBE while maintaining, even improving
the accuracy of the solution. Second, the PLBE has the same
structure as the standard LBE, except for the slight difference
in the EDF, and, hence, the PLBE shares the same advan-
tages as the standard LBE. Finally, the PLBE can serve as a
basis to develop more efficient methods by employing other
acceleration techniques.
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